Compare any two graphics cards:
VS

GeForce GTX 1050 vs GeForce GTX 260 216SP 55 nm

Intro

The GeForce GTX 1050 has a clock frequency of 1354 MHz and a GDDR5 memory speed of 1750 MHz. It also features a 128-bit bus, and uses a 14 nm design. It features 640 SPUs, 40 Texture Address Units, and 32 Raster Operation Units.

Compare all that to the GeForce GTX 260 216SP 55 nm, which features a GPU core clock speed of 576 MHz, and 896 MB of GDDR3 memory set to run at 999 MHz through a 448-bit bus. It also is comprised of 216 SPUs, 72 Texture Address Units, and 28 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 1050 75 Watts
GeForce GTX 260 216SP 55 nm 171 Watts
Difference: 96 Watts (128%)

Memory Bandwidth

In theory, the GeForce GTX 1050 is 3% quicker than the GeForce GTX 260 216SP 55 nm in general, due to its greater data rate. (explain)

GeForce GTX 1050 114688 MB/sec
GeForce GTX 260 216SP 55 nm 111888 MB/sec
Difference: 2800 (3%)

Texel Rate

The GeForce GTX 1050 will be a lot (approximately 31%) faster with regards to AF than the GeForce GTX 260 216SP 55 nm. (explain)

GeForce GTX 1050 54160 Mtexels/sec
GeForce GTX 260 216SP 55 nm 41472 Mtexels/sec
Difference: 12688 (31%)

Pixel Rate

The GeForce GTX 1050 should be quite a bit (about 169%) faster with regards to FSAA than the GeForce GTX 260 216SP 55 nm, and also able to handle higher resolutions without slowing down too much. (explain)

GeForce GTX 1050 43328 Mpixels/sec
GeForce GTX 260 216SP 55 nm 16128 Mpixels/sec
Difference: 27200 (169%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 1050

Amazon.com

Check prices at:

GeForce GTX 260 216SP 55 nm

Amazon.com

Check prices at:

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 1050 GeForce GTX 260 216SP 55 nm
Manufacturer nVidia nVidia
Year October 2016 December 22, 2008
Code Name GP107-300 G200b
Memory 2048 MB 896 MB
Core Speed 1354 MHz 576 MHz
Memory Speed 7000 MHz 1998 MHz
Power (Max TDP) 75 watts 171 watts
Bandwidth 114688 MB/sec 111888 MB/sec
Texel Rate 54160 Mtexels/sec 41472 Mtexels/sec
Pixel Rate 43328 Mpixels/sec 16128 Mpixels/sec
Unified Shaders 640 216
Texture Mapping Units 40 72
Render Output Units 32 28
Bus Type GDDR5 GDDR3
Bus Width 128-bit 448-bit
Fab Process 14 nm 55 nm
Transistors 3300 million 1400 million
Bus PCIe 3.0 x16 PCIe x16 2.0
DirectX Version DirectX 12.0 DirectX 10
OpenGL Version OpenGL 4.5 OpenGL 3.1

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of MB per second) that can be transferred past the external memory interface within a second. It is worked out by multiplying the card's bus width by the speed of its memory. If it uses DDR memory, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This number is calculated by multiplying the total amount of texture units of the card by the core clock speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card could possibly record to its local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Display Prices

Hide Prices

GeForce GTX 1050

Amazon.com

Check prices at:

GeForce GTX 260 216SP 55 nm

Amazon.com

Check prices at:

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


*

WordPress Anti Spam by WP-SpamShield